Balancing Chemical Equations

Reminder: Signs of a Chemical Rxn

Law of Conservation of Mass

In normal chemical reactions (not nuclear rxns),

- Total mass of reactants is equal to total mass of products
- Nothing can magically appear
- Nothing can magically disappear
Science not Magic!

Ways to Write Equations

Word Equations

Written with the names of the compounds hydrogen gas and chlorine gas combine to form hydrogen chloride gas

Skeleton Equations

Written with formulas

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})-->2 \mathrm{HCl}(\mathrm{~g})
$$

Parts of Equations

$$
\underset{\substack{\text { Reactants } \\ \text { (starting materials) }}}{A+B}>\underset{\substack{\text { Products } \\ \text { (ending materials) }}}{\text { (ent }}
$$

Phases

$$
\begin{aligned}
& \qquad A_{(g)}+B_{(s)} \rightarrow C_{(I)}+D_{(a q)} \\
& g \text { = gas } \\
& s \text { = solid } \\
& I=\text { liquid } \\
& a q=\text { "aqueous" - ions in water }
\end{aligned}
$$

Diatomic Gases

$\mathrm{H}_{2} \mathrm{Cl}_{2}$ Horses Need
 $\mathrm{N}_{2} \mathrm{Br}_{2}$
 $\mathrm{O}_{2} \mathrm{I}_{2}$
 F_{2}

Rules for Balancing

1) Write the skeleton equation
2) Count atoms on each side of arrow (look at the subscripts \& the coefficients!)
3) Change coefficients so the atoms are balanced; NEVER change subscripts!
4) Make sure coefficients are in lowest ratio possible
5) Check your work!

USE

Tips for Balancing that isometimes) Help!

- Stuck? Erase and start over!
- Try to balance atoms that appear in the fewest number of places first
- Try to leave any diatomics until the end
- Oxygens are often the hardest to balance
- Try to balance polyatomic ions as a "chunk"
- Combustion reactions - put a " 2 " in front of the hydrocarbon and THEN count \& balance (may need to reduce your coefficients at the end, but it makes it easier!)

Practice Prohlems

Show your work in your notes the way I do!

Yes, eventually you should be able to do these mostly in your head.

BUT you need to be able to show your work when asked, or when you get a hard problem. SO PRACTICE SHOWING YOUR WORK!

USE PENCIL!!!

USE PENCIL!!!!!

$\underline{2} \mathrm{ZnS}(\mathrm{aq})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{ZnO}(\mathrm{aq})+\ldots \underline{2} \mathrm{~s}(\mathrm{~s})$
$\begin{array}{lll}\mathrm{Zn}: & 1 & \mathbf{2} \\ \mathrm{~S}: & \not \subset & \mathbf{2}\end{array}$
O: 2

2	2
2	2
	2

$Z n:$	X	2	2
$\mathrm{~S}:$	X	2	2
$\mathrm{O}:$	X	2	2

$\mathrm{Na}_{3} \mathrm{PO}_{4}+\underline{3} \mathrm{H}_{2} \mathrm{O}$

H: 46
P: 1
Na: $1 / 3$
O: $5^{\prime} 7$

$\mathrm{H}:$	2	6	6
$\mathrm{P}:$	$\mathbf{1}$		1
$\mathrm{Na}:$	3		3
$\mathrm{O}:$	5	7	7

Ca: 3	3
P: 2	2
O: 1220	20
H: 26	6
$\mathrm{s}: 1 / 3$	3

\#5

Count each atom - BEFORE, DURING, and AFTER!

*Tip! Combustion reaction! Hydrocarbon reacting with oxygen to make carbon dioxide and water. Put a 2 in front of hydrocarbon and THEN count and start the problem

CO_{2}
0: 28
C: 2
H:
8
8
8
2
8

$\mathrm{O}:$
$\mathrm{C}:$
$\mathrm{H}:$

 8
8
2
8

REDUCE!!!!!!!!!

\#6

Count each atom - BEFORE, DURING, and AFTER!
How to turn it into a multiple choice question?

What is the SUM of the coefficients? 6
List the coefficients: 1, 2, 2, 1

Can't forget that there are 1's when you don't have a \# for a coefficient!

Link to YouTube Presentation https://youtu.be/xUY2iKdn7jw

